miasm.core.graph module
from collections import defaultdict, namedtuple from future.utils import viewitems, viewvalues import re class DiGraph(object): """Implementation of directed graph""" # Stand for a cell in a dot node rendering DotCellDescription = namedtuple("DotCellDescription", ["text", "attr"]) def __init__(self): self._nodes = set() self._edges = [] # N -> Nodes N2 with a edge (N -> N2) self._nodes_succ = {} # N -> Nodes N2 with a edge (N2 -> N) self._nodes_pred = {} def __repr__(self): out = [] for node in self._nodes: out.append(str(node)) for src, dst in self._edges: out.append("%s -> %s" % (src, dst)) return '\n'.join(out) def nodes(self): return self._nodes def edges(self): return self._edges def merge(self, graph): """Merge the current graph with @graph @graph: DiGraph instance """ for node in graph._nodes: self.add_node(node) for edge in graph._edges: self.add_edge(*edge) def __add__(self, graph): """Wrapper on `.merge`""" self.merge(graph) return self def copy(self): """Copy the current graph instance""" graph = self.__class__() return graph + self def __eq__(self, graph): if not isinstance(graph, self.__class__): return False if self._nodes != graph.nodes(): return False return sorted(self._edges) == sorted(graph.edges()) def __ne__(self, other): return not self.__eq__(other) def add_node(self, node): """Add the node @node to the graph. If the node was already present, return False. Otherwise, return True """ if node in self._nodes: return False self._nodes.add(node) self._nodes_succ[node] = [] self._nodes_pred[node] = [] return True def del_node(self, node): """Delete the @node of the graph; Also delete every edge to/from this @node""" if node in self._nodes: self._nodes.remove(node) for pred in self.predecessors(node): self.del_edge(pred, node) for succ in self.successors(node): self.del_edge(node, succ) def add_edge(self, src, dst): if not src in self._nodes: self.add_node(src) if not dst in self._nodes: self.add_node(dst) self._edges.append((src, dst)) self._nodes_succ[src].append(dst) self._nodes_pred[dst].append(src) def add_uniq_edge(self, src, dst): """Add an edge from @src to @dst if it doesn't already exist""" if (src not in self._nodes_succ or dst not in self._nodes_succ[src]): self.add_edge(src, dst) def del_edge(self, src, dst): self._edges.remove((src, dst)) self._nodes_succ[src].remove(dst) self._nodes_pred[dst].remove(src) def discard_edge(self, src, dst): """Remove edge between @src and @dst if it exits""" if (src, dst) in self._edges: self.del_edge(src, dst) def predecessors_iter(self, node): if not node in self._nodes_pred: return for n_pred in self._nodes_pred[node]: yield n_pred def predecessors(self, node): return [x for x in self.predecessors_iter(node)] def successors_iter(self, node): if not node in self._nodes_succ: return for n_suc in self._nodes_succ[node]: yield n_suc def successors(self, node): return [x for x in self.successors_iter(node)] def leaves_iter(self): for node in self._nodes: if not self._nodes_succ[node]: yield node def leaves(self): return [x for x in self.leaves_iter()] def heads_iter(self): for node in self._nodes: if not self._nodes_pred[node]: yield node def heads(self): return [x for x in self.heads_iter()] def find_path(self, src, dst, cycles_count=0, done=None): """ Searches for paths from @src to @dst @src: loc_key of basic block from which it should start @dst: loc_key of basic block where it should stop @cycles_count: maximum number of times a basic block can be processed @done: dictionary of already processed loc_keys, it's value is number of times it was processed @out: list of paths from @src to @dst """ if done is None: done = {} if dst in done and done[dst] > cycles_count: return [[]] if src == dst: return [[src]] out = [] for node in self.predecessors(dst): done_n = dict(done) done_n[dst] = done_n.get(dst, 0) + 1 for path in self.find_path(src, node, cycles_count, done_n): if path and path[0] == src: out.append(path + [dst]) return out def find_path_from_src(self, src, dst, cycles_count=0, done=None): """ This function does the same as function find_path. But it searches the paths from src to dst, not vice versa like find_path. This approach might be more efficient in some cases. @src: loc_key of basic block from which it should start @dst: loc_key of basic block where it should stop @cycles_count: maximum number of times a basic block can be processed @done: dictionary of already processed loc_keys, it's value is number of times it was processed @out: list of paths from @src to @dst """ if done is None: done = {} if src == dst: return [[src]] if src in done and done[src] > cycles_count: return [[]] out = [] for node in self.successors(src): done_n = dict(done) done_n[src] = done_n.get(src, 0) + 1 for path in self.find_path_from_src(node, dst, cycles_count, done_n): if path and path[len(path)-1] == dst: out.append([src] + path) return out def nodeid(self, node): """ Returns uniq id for a @node @node: a node of the graph """ return hash(node) & 0xFFFFFFFFFFFFFFFF def node2lines(self, node): """ Returns an iterator on cells of the dot @node. A DotCellDescription or a list of DotCellDescription are accepted @node: a node of the graph """ yield self.DotCellDescription(text=str(node), attr={}) def node_attr(self, node): """ Returns a dictionary of the @node's attributes @node: a node of the graph """ return {} def edge_attr(self, src, dst): """ Return a dictionary of attributes for the edge between @src and @dst @src: the source node of the edge @dst: the destination node of the edge """ return {} @staticmethod def _fix_chars(token): return "&#%04d;" % ord(token.group()) @staticmethod def _attr2str(default_attr, attr): return ' '.join( '%s="%s"' % (name, value) for name, value in viewitems(dict(default_attr, **attr)) ) def dot(self): """Render dot graph with HTML""" escape_chars = re.compile('[' + re.escape('{}') + '&|<>' + ']') td_attr = {'align': 'left'} nodes_attr = {'shape': 'Mrecord', 'fontname': 'Courier New'} out = ["digraph asm_graph {"] # Generate basic nodes out_nodes = [] for node in self.nodes(): node_id = self.nodeid(node) out_node = '%s [\n' % node_id out_node += self._attr2str(nodes_attr, self.node_attr(node)) out_node += 'label =<<table border="0" cellborder="0" cellpadding="3">' node_html_lines = [] for lineDesc in self.node2lines(node): out_render = "" if isinstance(lineDesc, self.DotCellDescription): lineDesc = [lineDesc] for col in lineDesc: out_render += "<td %s>%s</td>" % ( self._attr2str(td_attr, col.attr), escape_chars.sub(self._fix_chars, str(col.text))) node_html_lines.append(out_render) node_html_lines = ('<tr>' + ('</tr><tr>').join(node_html_lines) + '</tr>') out_node += node_html_lines + "</table>> ];" out_nodes.append(out_node) out += out_nodes # Generate links for src, dst in self.edges(): attrs = self.edge_attr(src, dst) attrs = ' '.join( '%s="%s"' % (name, value) for name, value in viewitems(attrs) ) out.append('%s -> %s' % (self.nodeid(src), self.nodeid(dst)) + '[' + attrs + '];') out.append("}") return '\n'.join(out) @staticmethod def _reachable_nodes(head, next_cb): """Generic algorithm to compute all nodes reachable from/to node @head""" todo = set([head]) reachable = set() while todo: node = todo.pop() if node in reachable: continue reachable.add(node) yield node for next_node in next_cb(node): todo.add(next_node) def predecessors_stop_node_iter(self, node, head): if node == head: return for next_node in self.predecessors_iter(node): yield next_node def reachable_sons(self, head): """Compute all nodes reachable from node @head. Each son is an immediate successor of an arbitrary, already yielded son of @head""" return self._reachable_nodes(head, self.successors_iter) def reachable_parents(self, leaf): """Compute all parents of node @leaf. Each parent is an immediate predecessor of an arbitrary, already yielded parent of @leaf""" return self._reachable_nodes(leaf, self.predecessors_iter) def reachable_parents_stop_node(self, leaf, head): """Compute all parents of node @leaf. Each parent is an immediate predecessor of an arbitrary, already yielded parent of @leaf. Do not compute reachables past @head node""" return self._reachable_nodes( leaf, lambda node_cur: self.predecessors_stop_node_iter( node_cur, head ) ) @staticmethod def _compute_generic_dominators(head, reachable_cb, prev_cb, next_cb): """Generic algorithm to compute either the dominators or postdominators of the graph. @head: the head/leaf of the graph @reachable_cb: sons/parents of the head/leaf @prev_cb: return predecessors/successors of a node @next_cb: return successors/predecessors of a node """ nodes = set(reachable_cb(head)) dominators = {} for node in nodes: dominators[node] = set(nodes) dominators[head] = set([head]) todo = set(nodes) while todo: node = todo.pop() # Heads state must not be changed if node == head: continue # Compute intersection of all predecessors'dominators new_dom = None for pred in prev_cb(node): if not pred in nodes: continue if new_dom is None: new_dom = set(dominators[pred]) new_dom.intersection_update(dominators[pred]) # We are not a head to we have at least one dominator assert(new_dom is not None) new_dom.update(set([node])) # If intersection has changed, add sons to the todo list if new_dom == dominators[node]: continue dominators[node] = new_dom for succ in next_cb(node): todo.add(succ) return dominators def compute_dominators(self, head): """Compute the dominators of the graph""" return self._compute_generic_dominators(head, self.reachable_sons, self.predecessors_iter, self.successors_iter) def compute_postdominators(self, leaf): """Compute the postdominators of the graph""" return self._compute_generic_dominators(leaf, self.reachable_parents, self.successors_iter, self.predecessors_iter) def compute_dominator_tree(self, head): """ Computes the dominator tree of a graph :param head: head of graph :return: DiGraph """ idoms = self.compute_immediate_dominators(head) dominator_tree = DiGraph() for node in idoms: dominator_tree.add_edge(idoms[node], node) return dominator_tree @staticmethod def _walk_generic_dominator(node, gen_dominators, succ_cb): """Generic algorithm to return an iterator of the ordered list of @node's dominators/post_dominator. The function doesn't return the self reference in dominators. @node: The start node @gen_dominators: The dictionary containing at least node's dominators/post_dominators @succ_cb: return predecessors/successors of a node """ # Init done = set() if node not in gen_dominators: # We are in a branch which doesn't reach head return node_gen_dominators = set(gen_dominators[node]) todo = set([node]) # Avoid working on itself node_gen_dominators.remove(node) # For each level while node_gen_dominators: new_node = None # Worklist pattern while todo: node = todo.pop() if node in done: continue if node in node_gen_dominators: new_node = node break # Avoid loops done.add(node) # Look for the next level for pred in succ_cb(node): todo.add(pred) # Return the node; it's the next starting point assert(new_node is not None) yield new_node node_gen_dominators.remove(new_node) todo = set([new_node]) def walk_dominators(self, node, dominators): """Return an iterator of the ordered list of @node's dominators The function doesn't return the self reference in dominators. @node: The start node @dominators: The dictionary containing at least node's dominators """ return self._walk_generic_dominator(node, dominators, self.predecessors_iter) def walk_postdominators(self, node, postdominators): """Return an iterator of the ordered list of @node's postdominators The function doesn't return the self reference in postdominators. @node: The start node @postdominators: The dictionary containing at least node's postdominators """ return self._walk_generic_dominator(node, postdominators, self.successors_iter) def compute_immediate_dominators(self, head): """Compute the immediate dominators of the graph""" dominators = self.compute_dominators(head) idoms = {} for node in dominators: for predecessor in self.walk_dominators(node, dominators): if predecessor in dominators[node] and node != predecessor: idoms[node] = predecessor break return idoms def compute_immediate_postdominators(self,tail): """Compute the immediate postdominators of the graph""" postdominators = self.compute_postdominators(tail) ipdoms = {} for node in postdominators: for successor in self.walk_postdominators(node, postdominators): if successor in postdominators[node] and node != successor: ipdoms[node] = successor break return ipdoms def compute_dominance_frontier(self, head): """ Compute the dominance frontier of the graph Source: Cooper, Keith D., Timothy J. Harvey, and Ken Kennedy. "A simple, fast dominance algorithm." Software Practice & Experience 4 (2001), p. 9 """ idoms = self.compute_immediate_dominators(head) frontier = {} for node in idoms: if len(self._nodes_pred[node]) >= 2: for predecessor in self.predecessors_iter(node): runner = predecessor if runner not in idoms: continue while runner != idoms[node]: if runner not in frontier: frontier[runner] = set() frontier[runner].add(node) runner = idoms[runner] return frontier def _walk_generic_first(self, head, flag, succ_cb): """ Generic algorithm to compute breadth or depth first search for a node. @head: the head of the graph @flag: denotes if @todo is used as queue or stack @succ_cb: returns a node's predecessors/successors :return: next node """ todo = [head] done = set() while todo: node = todo.pop(flag) if node in done: continue done.add(node) for succ in succ_cb(node): todo.append(succ) yield node def walk_breadth_first_forward(self, head): """Performs a breadth first search on the graph from @head""" return self._walk_generic_first(head, 0, self.successors_iter) def walk_depth_first_forward(self, head): """Performs a depth first search on the graph from @head""" return self._walk_generic_first(head, -1, self.successors_iter) def walk_breadth_first_backward(self, head): """Performs a breadth first search on the reversed graph from @head""" return self._walk_generic_first(head, 0, self.predecessors_iter) def walk_depth_first_backward(self, head): """Performs a depth first search on the reversed graph from @head""" return self._walk_generic_first(head, -1, self.predecessors_iter) def has_loop(self): """Return True if the graph contains at least a cycle""" todo = list(self.nodes()) # tested nodes done = set() # current DFS nodes current = set() while todo: node = todo.pop() if node in done: continue if node in current: # DFS branch end for succ in self.successors_iter(node): if succ in current: return True # A node cannot be in current AND in done current.remove(node) done.add(node) else: # Launch DFS from node todo.append(node) current.add(node) todo += self.successors(node) return False def compute_natural_loops(self, head): """ Computes all natural loops in the graph. Source: Aho, Alfred V., Lam, Monica S., Sethi, R. and Jeffrey Ullman. "Compilers: Principles, Techniques, & Tools, Second Edition" Pearson/Addison Wesley (2007), Chapter 9.6.6 :param head: head of the graph :return: yield a tuple of the form (back edge, loop body) """ for a, b in self.compute_back_edges(head): body = self._compute_natural_loop_body(b, a) yield ((a, b), body) def compute_back_edges(self, head): """ Computes all back edges from a node to a dominator in the graph. :param head: head of graph :return: yield a back edge """ dominators = self.compute_dominators(head) # traverse graph for node in self.walk_depth_first_forward(head): for successor in self.successors_iter(node): # check for a back edge to a dominator if successor in dominators[node]: edge = (node, successor) yield edge def _compute_natural_loop_body(self, head, leaf): """ Computes the body of a natural loop by a depth-first search on the reversed control flow graph. :param head: leaf of the loop :param leaf: header of the loop :return: set containing loop body """ todo = [leaf] done = {head} while todo: node = todo.pop() if node in done: continue done.add(node) for predecessor in self.predecessors_iter(node): todo.append(predecessor) return done def compute_strongly_connected_components(self): """ Partitions the graph into strongly connected components. Iterative implementation of Gabow's path-based SCC algorithm. Source: Gabow, Harold N. "Path-based depth-first search for strong and biconnected components." Information Processing Letters 74.3 (2000), pp. 109--110 The iterative implementation is inspired by Mark Dickinson's code: http://code.activestate.com/recipes/ 578507-strongly-connected-components-of-a-directed-graph/ :return: yield a strongly connected component """ stack = [] boundaries = [] counter = len(self.nodes()) # init index with 0 index = {v: 0 for v in self.nodes()} # state machine for worklist algorithm VISIT, HANDLE_RECURSION, MERGE = 0, 1, 2 NodeState = namedtuple('NodeState', ['state', 'node']) for node in self.nodes(): # next node if node was already visited if index[node]: continue todo = [NodeState(VISIT, node)] done = set() while todo: current = todo.pop() if current.node in done: continue # node is unvisited if current.state == VISIT: stack.append(current.node) index[current.node] = len(stack) boundaries.append(index[current.node]) todo.append(NodeState(MERGE, current.node)) # follow successors for successor in self.successors_iter(current.node): todo.append(NodeState(HANDLE_RECURSION, successor)) # iterative handling of recursion algorithm elif current.state == HANDLE_RECURSION: # visit unvisited successor if index[current.node] == 0: todo.append(NodeState(VISIT, current.node)) else: # contract cycle if necessary while index[current.node] < boundaries[-1]: boundaries.pop() # merge strongly connected component else: if index[current.node] == boundaries[-1]: boundaries.pop() counter += 1 scc = set() while index[current.node] <= len(stack): popped = stack.pop() index[popped] = counter scc.add(popped) done.add(current.node) yield scc def compute_weakly_connected_components(self): """ Return the weakly connected components """ remaining = set(self.nodes()) components = [] while remaining: node = remaining.pop() todo = set() todo.add(node) component = set() done = set() while todo: node = todo.pop() if node in done: continue done.add(node) remaining.discard(node) component.add(node) todo.update(self.predecessors(node)) todo.update(self.successors(node)) components.append(component) return components def replace_node(self, node, new_node): """ Replace @node by @new_node """ predecessors = self.predecessors(node) successors = self.successors(node) self.del_node(node) for predecessor in predecessors: if predecessor == node: predecessor = new_node self.add_uniq_edge(predecessor, new_node) for successor in successors: if successor == node: successor = new_node self.add_uniq_edge(new_node, successor) class DiGraphSimplifier(object): """Wrapper on graph simplification passes. Instance handle passes lists. """ def __init__(self): self.passes = [] def enable_passes(self, passes): """Add @passes to passes to applied @passes: sequence of function (DiGraphSimplifier, DiGraph) -> None """ self.passes += passes def apply_simp(self, graph): """Apply enabled simplifications on graph @graph @graph: DiGraph instance """ while True: new_graph = graph.copy() for simp_func in self.passes: simp_func(self, new_graph) if new_graph == graph: break graph = new_graph return new_graph def __call__(self, graph): """Wrapper on 'apply_simp'""" return self.apply_simp(graph) class MatchGraphJoker(object): """MatchGraphJoker are joker nodes of MatchGraph, that is to say nodes which stand for any node. Restrictions can be added to jokers. If j1, j2 and j3 are MatchGraphJoker, one can quickly build a matcher for the pattern: | +----v----+ | (j1) | +----+----+ | +----v----+ | (j2) |<---+ +----+--+-+ | | +------+ +----v----+ | (j3) | +----+----+ | v Using: >>> matcher = j1 >> j2 >> j3 >>> matcher += j2 >> j2 Or: >>> matcher = j1 >> j2 >> j2 >> j3 """ def __init__(self, restrict_in=True, restrict_out=True, filt=None, name=None): """Instantiate a MatchGraphJoker, with restrictions @restrict_in: (optional) if set, the number of predecessors of the matched node must be the same than the joker node in the associated MatchGraph @restrict_out: (optional) counterpart of @restrict_in for successors @filt: (optional) function(graph, node) -> boolean for filtering candidate node @name: (optional) helper for displaying the current joker """ if filt is None: filt = lambda graph, node: True self.filt = filt if name is None: name = str(id(self)) self._name = name self.restrict_in = restrict_in self.restrict_out = restrict_out def __rshift__(self, joker): """Helper for describing a MatchGraph from @joker J1 >> J2 stands for an edge going to J2 from J1 @joker: MatchGraphJoker instance """ assert isinstance(joker, MatchGraphJoker) graph = MatchGraph() graph.add_node(self) graph.add_node(joker) graph.add_edge(self, joker) # For future "A >> B" idiom construction graph._last_node = joker return graph def __str__(self): info = [] if not self.restrict_in: info.append("In:*") if not self.restrict_out: info.append("Out:*") return "Joker %s %s" % (self._name, "(%s)" % " ".join(info) if info else "") class MatchGraph(DiGraph): """MatchGraph intends to be the counterpart of match_expr, but for DiGraph This class provides API to match a given DiGraph pattern, with addidionnal restrictions. The implemented algorithm is a naive approach. The recommended way to instantiate a MatchGraph is the use of MatchGraphJoker. """ def __init__(self, *args, **kwargs): super(MatchGraph, self).__init__(*args, **kwargs) # Construction helper self._last_node = None # Construction helpers def __rshift__(self, joker): """Construction helper, adding @joker to the current graph as a son of _last_node @joker: MatchGraphJoker instance""" assert isinstance(joker, MatchGraphJoker) assert isinstance(self._last_node, MatchGraphJoker) self.add_node(joker) self.add_edge(self._last_node, joker) self._last_node = joker return self def __add__(self, graph): """Construction helper, merging @graph with self @graph: MatchGraph instance """ assert isinstance(graph, MatchGraph) # Reset helpers flag self._last_node = None graph._last_node = None # Merge graph into self for node in graph.nodes(): self.add_node(node) for edge in graph.edges(): self.add_edge(*edge) return self # Graph matching def _check_node(self, candidate, expected, graph, partial_sol=None): """Check if @candidate can stand for @expected in @graph, given @partial_sol @candidate: @graph's node @expected: MatchGraphJoker instance @graph: DiGraph instance @partial_sol: (optional) dictionary of MatchGraphJoker -> @graph's node standing for a partial solution """ # Avoid having 2 different joker for the same node if partial_sol and candidate in viewvalues(partial_sol): return False # Check lambda filtering if not expected.filt(graph, candidate): return False # Check arity # If filter_in/out, then arity must be the same # Otherwise, arity of the candidate must be at least equal if ((expected.restrict_in == True and len(self.predecessors(expected)) != len(graph.predecessors(candidate))) or (expected.restrict_in == False and len(self.predecessors(expected)) > len(graph.predecessors(candidate)))): return False if ((expected.restrict_out == True and len(self.successors(expected)) != len(graph.successors(candidate))) or (expected.restrict_out == False and len(self.successors(expected)) > len(graph.successors(candidate)))): return False # Check edges with partial solution if any if not partial_sol: return True for pred in self.predecessors(expected): if (pred in partial_sol and partial_sol[pred] not in graph.predecessors(candidate)): return False for succ in self.successors(expected): if (succ in partial_sol and partial_sol[succ] not in graph.successors(candidate)): return False # All checks OK return True def _propagate_sol(self, node, partial_sol, graph, todo, propagator): """ Try to extend the current @partial_sol by propagating the solution using @propagator on @node. New solutions are added to @todo """ real_node = partial_sol[node] for candidate in propagator(self, node): # Edge already in the partial solution, skip it if candidate in partial_sol: continue # Check candidate for candidate_real in propagator(graph, real_node): if self._check_node(candidate_real, candidate, graph, partial_sol): temp_sol = partial_sol.copy() temp_sol[candidate] = candidate_real if temp_sol not in todo: todo.append(temp_sol) @staticmethod def _propagate_successors(graph, node): """Propagate through @node successors in @graph""" return graph.successors_iter(node) @staticmethod def _propagate_predecessors(graph, node): """Propagate through @node predecessors in @graph""" return graph.predecessors_iter(node) def match(self, graph): """Naive subgraph matching between graph and self. Iterator on matching solution, as dictionary MatchGraphJoker -> @graph @graph: DiGraph instance In order to obtained correct and complete results, @graph must be connected. """ # Partial solution: nodes corrects, edges between these nodes corrects # A partial solution is a dictionary MatchGraphJoker -> @graph's node todo = list() # Dictionaries containing partial solution done = list() # Already computed partial solutions # Elect first candidates to_match = next(iter(self._nodes)) for node in graph.nodes(): if self._check_node(node, to_match, graph): to_add = {to_match: node} if to_add not in todo: todo.append(to_add) while todo: # When a partial_sol is computed, if more precise partial solutions # are found, they will be added to 'todo' # -> using last entry of todo first performs a "depth first" # approach on solutions # -> the algorithm may converge faster to a solution, a desired # behavior while doing graph simplification (stopping after one # sol) partial_sol = todo.pop() # Avoid infinite loop and recurrent work if partial_sol in done: continue done.append(partial_sol) # If all nodes are matching, this is a potential solution if len(partial_sol) == len(self._nodes): yield partial_sol continue # Find node to tests using edges for node in partial_sol: self._propagate_sol(node, partial_sol, graph, todo, MatchGraph._propagate_successors) self._propagate_sol(node, partial_sol, graph, todo, MatchGraph._propagate_predecessors)
Classes
class DiGraph
Implementation of directed graph
class DiGraph(object): """Implementation of directed graph""" # Stand for a cell in a dot node rendering DotCellDescription = namedtuple("DotCellDescription", ["text", "attr"]) def __init__(self): self._nodes = set() self._edges = [] # N -> Nodes N2 with a edge (N -> N2) self._nodes_succ = {} # N -> Nodes N2 with a edge (N2 -> N) self._nodes_pred = {} def __repr__(self): out = [] for node in self._nodes: out.append(str(node)) for src, dst in self._edges: out.append("%s -> %s" % (src, dst)) return '\n'.join(out) def nodes(self): return self._nodes def edges(self): return self._edges def merge(self, graph): """Merge the current graph with @graph @graph: DiGraph instance """ for node in graph._nodes: self.add_node(node) for edge in graph._edges: self.add_edge(*edge) def __add__(self, graph): """Wrapper on `.merge`""" self.merge(graph) return self def copy(self): """Copy the current graph instance""" graph = self.__class__() return graph + self def __eq__(self, graph): if not isinstance(graph, self.__class__): return False if self._nodes != graph.nodes(): return False return sorted(self._edges) == sorted(graph.edges()) def __ne__(self, other): return not self.__eq__(other) def add_node(self, node): """Add the node @node to the graph. If the node was already present, return False. Otherwise, return True """ if node in self._nodes: return False self._nodes.add(node) self._nodes_succ[node] = [] self._nodes_pred[node] = [] return True def del_node(self, node): """Delete the @node of the graph; Also delete every edge to/from this @node""" if node in self._nodes: self._nodes.remove(node) for pred in self.predecessors(node): self.del_edge(pred, node) for succ in self.successors(node): self.del_edge(node, succ) def add_edge(self, src, dst): if not src in self._nodes: self.add_node(src) if not dst in self._nodes: self.add_node(dst) self._edges.append((src, dst)) self._nodes_succ[src].append(dst) self._nodes_pred[dst].append(src) def add_uniq_edge(self, src, dst): """Add an edge from @src to @dst if it doesn't already exist""" if (src not in self._nodes_succ or dst not in self._nodes_succ[src]): self.add_edge(src, dst) def del_edge(self, src, dst): self._edges.remove((src, dst)) self._nodes_succ[src].remove(dst) self._nodes_pred[dst].remove(src) def discard_edge(self, src, dst): """Remove edge between @src and @dst if it exits""" if (src, dst) in self._edges: self.del_edge(src, dst) def predecessors_iter(self, node): if not node in self._nodes_pred: return for n_pred in self._nodes_pred[node]: yield n_pred def predecessors(self, node): return [x for x in self.predecessors_iter(node)] def successors_iter(self, node): if not node in self._nodes_succ: return for n_suc in self._nodes_succ[node]: yield n_suc def successors(self, node): return [x for x in self.successors_iter(node)] def leaves_iter(self): for node in self._nodes: if not self._nodes_succ[node]: yield node def leaves(self): return [x for x in self.leaves_iter()] def heads_iter(self): for node in self._nodes: if not self._nodes_pred[node]: yield node def heads(self): return [x for x in self.heads_iter()] def find_path(self, src, dst, cycles_count=0, done=None): """ Searches for paths from @src to @dst @src: loc_key of basic block from which it should start @dst: loc_key of basic block where it should stop @cycles_count: maximum number of times a basic block can be processed @done: dictionary of already processed loc_keys, it's value is number of times it was processed @out: list of paths from @src to @dst """ if done is None: done = {} if dst in done and done[dst] > cycles_count: return [[]] if src == dst: return [[src]] out = [] for node in self.predecessors(dst): done_n = dict(done) done_n[dst] = done_n.get(dst, 0) + 1 for path in self.find_path(src, node, cycles_count, done_n): if path and path[0] == src: out.append(path + [dst]) return out def find_path_from_src(self, src, dst, cycles_count=0, done=None): """ This function does the same as function find_path. But it searches the paths from src to dst, not vice versa like find_path. This approach might be more efficient in some cases. @src: loc_key of basic block from which it should start @dst: loc_key of basic block where it should stop @cycles_count: maximum number of times a basic block can be processed @done: dictionary of already processed loc_keys, it's value is number of times it was processed @out: list of paths from @src to @dst """ if done is None: done = {} if src == dst: return [[src]] if src in done and done[src] > cycles_count: return [[]] out = [] for node in self.successors(src): done_n = dict(done) done_n[src] = done_n.get(src, 0) + 1 for path in self.find_path_from_src(node, dst, cycles_count, done_n): if path and path[len(path)-1] == dst: out.append([src] + path) return out def nodeid(self, node): """ Returns uniq id for a @node @node: a node of the graph """ return hash(node) & 0xFFFFFFFFFFFFFFFF def node2lines(self, node): """ Returns an iterator on cells of the dot @node. A DotCellDescription or a list of DotCellDescription are accepted @node: a node of the graph """ yield self.DotCellDescription(text=str(node), attr={}) def node_attr(self, node): """ Returns a dictionary of the @node's attributes @node: a node of the graph """ return {} def edge_attr(self, src, dst): """ Return a dictionary of attributes for the edge between @src and @dst @src: the source node of the edge @dst: the destination node of the edge """ return {} @staticmethod def _fix_chars(token): return "&#%04d;" % ord(token.group()) @staticmethod def _attr2str(default_attr, attr): return ' '.join( '%s="%s"' % (name, value) for name, value in viewitems(dict(default_attr, **attr)) ) def dot(self): """Render dot graph with HTML""" escape_chars = re.compile('[' + re.escape('{}') + '&|<>' + ']') td_attr = {'align': 'left'} nodes_attr = {'shape': 'Mrecord', 'fontname': 'Courier New'} out = ["digraph asm_graph {"] # Generate basic nodes out_nodes = [] for node in self.nodes(): node_id = self.nodeid(node) out_node = '%s [\n' % node_id out_node += self._attr2str(nodes_attr, self.node_attr(node)) out_node += 'label =<<table border="0" cellborder="0" cellpadding="3">' node_html_lines = [] for lineDesc in self.node2lines(node): out_render = "" if isinstance(lineDesc, self.DotCellDescription): lineDesc = [lineDesc] for col in lineDesc: out_render += "<td %s>%s</td>" % ( self._attr2str(td_attr, col.attr), escape_chars.sub(self._fix_chars, str(col.text))) node_html_lines.append(out_render) node_html_lines = ('<tr>' + ('</tr><tr>').join(node_html_lines) + '</tr>') out_node += node_html_lines + "</table>> ];" out_nodes.append(out_node) out += out_nodes # Generate links for src, dst in self.edges(): attrs = self.edge_attr(src, dst) attrs = ' '.join( '%s="%s"' % (name, value) for name, value in viewitems(attrs) ) out.append('%s -> %s' % (self.nodeid(src), self.nodeid(dst)) + '[' + attrs + '];') out.append("}") return '\n'.join(out) @staticmethod def _reachable_nodes(head, next_cb): """Generic algorithm to compute all nodes reachable from/to node @head""" todo = set([head]) reachable = set() while todo: node = todo.pop() if node in reachable: continue reachable.add(node) yield node for next_node in next_cb(node): todo.add(next_node) def predecessors_stop_node_iter(self, node, head): if node == head: return for next_node in self.predecessors_iter(node): yield next_node def reachable_sons(self, head): """Compute all nodes reachable from node @head. Each son is an immediate successor of an arbitrary, already yielded son of @head""" return self._reachable_nodes(head, self.successors_iter) def reachable_parents(self, leaf): """Compute all parents of node @leaf. Each parent is an immediate predecessor of an arbitrary, already yielded parent of @leaf""" return self._reachable_nodes(leaf, self.predecessors_iter) def reachable_parents_stop_node(self, leaf, head): """Compute all parents of node @leaf. Each parent is an immediate predecessor of an arbitrary, already yielded parent of @leaf. Do not compute reachables past @head node""" return self._reachable_nodes( leaf, lambda node_cur: self.predecessors_stop_node_iter( node_cur, head ) ) @staticmethod def _compute_generic_dominators(head, reachable_cb, prev_cb, next_cb): """Generic algorithm to compute either the dominators or postdominators of the graph. @head: the head/leaf of the graph @reachable_cb: sons/parents of the head/leaf @prev_cb: return predecessors/successors of a node @next_cb: return successors/predecessors of a node """ nodes = set(reachable_cb(head)) dominators = {} for node in nodes: dominators[node] = set(nodes) dominators[head] = set([head]) todo = set(nodes) while todo: node = todo.pop() # Heads state must not be changed if node == head: continue # Compute intersection of all predecessors'dominators new_dom = None for pred in prev_cb(node): if not pred in nodes: continue if new_dom is None: new_dom = set(dominators[pred]) new_dom.intersection_update(dominators[pred]) # We are not a head to we have at least one dominator assert(new_dom is not None) new_dom.update(set([node])) # If intersection has changed, add sons to the todo list if new_dom == dominators[node]: continue dominators[node] = new_dom for succ in next_cb(node): todo.add(succ) return dominators def compute_dominators(self, head): """Compute the dominators of the graph""" return self._compute_generic_dominators(head, self.reachable_sons, self.predecessors_iter, self.successors_iter) def compute_postdominators(self, leaf): """Compute the postdominators of the graph""" return self._compute_generic_dominators(leaf, self.reachable_parents, self.successors_iter, self.predecessors_iter) def compute_dominator_tree(self, head): """ Computes the dominator tree of a graph :param head: head of graph :return: DiGraph """ idoms = self.compute_immediate_dominators(head) dominator_tree = DiGraph() for node in idoms: dominator_tree.add_edge(idoms[node], node) return dominator_tree @staticmethod def _walk_generic_dominator(node, gen_dominators, succ_cb): """Generic algorithm to return an iterator of the ordered list of @node's dominators/post_dominator. The function doesn't return the self reference in dominators. @node: The start node @gen_dominators: The dictionary containing at least node's dominators/post_dominators @succ_cb: return predecessors/successors of a node """ # Init done = set() if node not in gen_dominators: # We are in a branch which doesn't reach head return node_gen_dominators = set(gen_dominators[node]) todo = set([node]) # Avoid working on itself node_gen_dominators.remove(node) # For each level while node_gen_dominators: new_node = None # Worklist pattern while todo: node = todo.pop() if node in done: continue if node in node_gen_dominators: new_node = node break # Avoid loops done.add(node) # Look for the next level for pred in succ_cb(node): todo.add(pred) # Return the node; it's the next starting point assert(new_node is not None) yield new_node node_gen_dominators.remove(new_node) todo = set([new_node]) def walk_dominators(self, node, dominators): """Return an iterator of the ordered list of @node's dominators The function doesn't return the self reference in dominators. @node: The start node @dominators: The dictionary containing at least node's dominators """ return self._walk_generic_dominator(node, dominators, self.predecessors_iter) def walk_postdominators(self, node, postdominators): """Return an iterator of the ordered list of @node's postdominators The function doesn't return the self reference in postdominators. @node: The start node @postdominators: The dictionary containing at least node's postdominators """ return self._walk_generic_dominator(node, postdominators, self.successors_iter) def compute_immediate_dominators(self, head): """Compute the immediate dominators of the graph""" dominators = self.compute_dominators(head) idoms = {} for node in dominators: for predecessor in self.walk_dominators(node, dominators): if predecessor in dominators[node] and node != predecessor: idoms[node] = predecessor break return idoms def compute_immediate_postdominators(self,tail): """Compute the immediate postdominators of the graph""" postdominators = self.compute_postdominators(tail) ipdoms = {} for node in postdominators: for successor in self.walk_postdominators(node, postdominators): if successor in postdominators[node] and node != successor: ipdoms[node] = successor break return ipdoms def compute_dominance_frontier(self, head): """ Compute the dominance frontier of the graph Source: Cooper, Keith D., Timothy J. Harvey, and Ken Kennedy. "A simple, fast dominance algorithm." Software Practice & Experience 4 (2001), p. 9 """ idoms = self.compute_immediate_dominators(head) frontier = {} for node in idoms: if len(self._nodes_pred[node]) >= 2: for predecessor in self.predecessors_iter(node): runner = predecessor if runner not in idoms: continue while runner != idoms[node]: if runner not in frontier: frontier[runner] = set() frontier[runner].add(node) runner = idoms[runner] return frontier def _walk_generic_first(self, head, flag, succ_cb): """ Generic algorithm to compute breadth or depth first search for a node. @head: the head of the graph @flag: denotes if @todo is used as queue or stack @succ_cb: returns a node's predecessors/successors :return: next node """ todo = [head] done = set() while todo: node = todo.pop(flag) if node in done: continue done.add(node) for succ in succ_cb(node): todo.append(succ) yield node def walk_breadth_first_forward(self, head): """Performs a breadth first search on the graph from @head""" return self._walk_generic_first(head, 0, self.successors_iter) def walk_depth_first_forward(self, head): """Performs a depth first search on the graph from @head""" return self._walk_generic_first(head, -1, self.successors_iter) def walk_breadth_first_backward(self, head): """Performs a breadth first search on the reversed graph from @head""" return self._walk_generic_first(head, 0, self.predecessors_iter) def walk_depth_first_backward(self, head): """Performs a depth first search on the reversed graph from @head""" return self._walk_generic_first(head, -1, self.predecessors_iter) def has_loop(self): """Return True if the graph contains at least a cycle""" todo = list(self.nodes()) # tested nodes done = set() # current DFS nodes current = set() while todo: node = todo.pop() if node in done: continue if node in current: # DFS branch end for succ in self.successors_iter(node): if succ in current: return True # A node cannot be in current AND in done current.remove(node) done.add(node) else: # Launch DFS from node todo.append(node) current.add(node) todo += self.successors(node) return False def compute_natural_loops(self, head): """ Computes all natural loops in the graph. Source: Aho, Alfred V., Lam, Monica S., Sethi, R. and Jeffrey Ullman. "Compilers: Principles, Techniques, & Tools, Second Edition" Pearson/Addison Wesley (2007), Chapter 9.6.6 :param head: head of the graph :return: yield a tuple of the form (back edge, loop body) """ for a, b in self.compute_back_edges(head): body = self._compute_natural_loop_body(b, a) yield ((a, b), body) def compute_back_edges(self, head): """ Computes all back edges from a node to a dominator in the graph. :param head: head of graph :return: yield a back edge """ dominators = self.compute_dominators(head) # traverse graph for node in self.walk_depth_first_forward(head): for successor in self.successors_iter(node): # check for a back edge to a dominator if successor in dominators[node]: edge = (node, successor) yield edge def _compute_natural_loop_body(self, head, leaf): """ Computes the body of a natural loop by a depth-first search on the reversed control flow graph. :param head: leaf of the loop :param leaf: header of the loop :return: set containing loop body """ todo = [leaf] done = {head} while todo: node = todo.pop() if node in done: continue done.add(node) for predecessor in self.predecessors_iter(node): todo.append(predecessor) return done def compute_strongly_connected_components(self): """ Partitions the graph into strongly connected components. Iterative implementation of Gabow's path-based SCC algorithm. Source: Gabow, Harold N. "Path-based depth-first search for strong and biconnected components." Information Processing Letters 74.3 (2000), pp. 109--110 The iterative implementation is inspired by Mark Dickinson's code: http://code.activestate.com/recipes/ 578507-strongly-connected-components-of-a-directed-graph/ :return: yield a strongly connected component """ stack = [] boundaries = [] counter = len(self.nodes()) # init index with 0 index = {v: 0 for v in self.nodes()} # state machine for worklist algorithm VISIT, HANDLE_RECURSION, MERGE = 0, 1, 2 NodeState = namedtuple('NodeState', ['state', 'node']) for node in self.nodes(): # next node if node was already visited if index[node]: continue todo = [NodeState(VISIT, node)] done = set() while todo: current = todo.pop() if current.node in done: continue # node is unvisited if current.state == VISIT: stack.append(current.node) index[current.node] = len(stack) boundaries.append(index[current.node]) todo.append(NodeState(MERGE, current.node)) # follow successors for successor in self.successors_iter(current.node): todo.append(NodeState(HANDLE_RECURSION, successor)) # iterative handling of recursion algorithm elif current.state == HANDLE_RECURSION: # visit unvisited successor if index[current.node] == 0: todo.append(NodeState(VISIT, current.node)) else: # contract cycle if necessary while index[current.node] < boundaries[-1]: boundaries.pop() # merge strongly connected component else: if index[current.node] == boundaries[-1]: boundaries.pop() counter += 1 scc = set() while index[current.node] <= len(stack): popped = stack.pop() index[popped] = counter scc.add(popped) done.add(current.node) yield scc def compute_weakly_connected_components(self): """ Return the weakly connected components """ remaining = set(self.nodes()) components = [] while remaining: node = remaining.pop() todo = set() todo.add(node) component = set() done = set() while todo: node = todo.pop() if node in done: continue done.add(node) remaining.discard(node) component.add(node) todo.update(self.predecessors(node)) todo.update(self.successors(node)) components.append(component) return components def replace_node(self, node, new_node): """ Replace @node by @new_node """ predecessors = self.predecessors(node) successors = self.successors(node) self.del_node(node) for predecessor in predecessors: if predecessor == node: predecessor = new_node self.add_uniq_edge(predecessor, new_node) for successor in successors: if successor == node: successor = new_node self.add_uniq_edge(new_node, successor)
Ancestors (in MRO)
- DiGraph
- builtins.object
Class variables
var DotCellDescription
Static methods
def __init__(
self)
Initialize self. See help(type(self)) for accurate signature.
def __init__(self): self._nodes = set() self._edges = [] # N -> Nodes N2 with a edge (N -> N2) self._nodes_succ = {} # N -> Nodes N2 with a edge (N2 -> N) self._nodes_pred = {}
def add_edge(
self, src, dst)
def add_edge(self, src, dst): if not src in self._nodes: self.add_node(src) if not dst in self._nodes: self.add_node(dst) self._edges.append((src, dst)) self._nodes_succ[src].append(dst) self._nodes_pred[dst].append(src)
def add_node(
self, node)
Add the node @node to the graph. If the node was already present, return False. Otherwise, return True
def add_node(self, node): """Add the node @node to the graph. If the node was already present, return False. Otherwise, return True """ if node in self._nodes: return False self._nodes.add(node) self._nodes_succ[node] = [] self._nodes_pred[node] = [] return True
def add_uniq_edge(
self, src, dst)
Add an edge from @src to @dst if it doesn't already exist
def add_uniq_edge(self, src, dst): """Add an edge from @src to @dst if it doesn't already exist""" if (src not in self._nodes_succ or dst not in self._nodes_succ[src]): self.add_edge(src, dst)
def compute_back_edges(
self, head)
Computes all back edges from a node to a dominator in the graph. :param head: head of graph :return: yield a back edge
def compute_back_edges(self, head): """ Computes all back edges from a node to a dominator in the graph. :param head: head of graph :return: yield a back edge """ dominators = self.compute_dominators(head) # traverse graph for node in self.walk_depth_first_forward(head): for successor in self.successors_iter(node): # check for a back edge to a dominator if successor in dominators[node]: edge = (node, successor) yield edge
def compute_dominance_frontier(
self, head)
Compute the dominance frontier of the graph
Source: Cooper, Keith D., Timothy J. Harvey, and Ken Kennedy. "A simple, fast dominance algorithm." Software Practice & Experience 4 (2001), p. 9
def compute_dominance_frontier(self, head): """ Compute the dominance frontier of the graph Source: Cooper, Keith D., Timothy J. Harvey, and Ken Kennedy. "A simple, fast dominance algorithm." Software Practice & Experience 4 (2001), p. 9 """ idoms = self.compute_immediate_dominators(head) frontier = {} for node in idoms: if len(self._nodes_pred[node]) >= 2: for predecessor in self.predecessors_iter(node): runner = predecessor if runner not in idoms: continue while runner != idoms[node]: if runner not in frontier: frontier[runner] = set() frontier[runner].add(node) runner = idoms[runner] return frontier
def compute_dominator_tree(
self, head)
Computes the dominator tree of a graph :param head: head of graph :return: DiGraph
def compute_dominator_tree(self, head): """ Computes the dominator tree of a graph :param head: head of graph :return: DiGraph """ idoms = self.compute_immediate_dominators(head) dominator_tree = DiGraph() for node in idoms: dominator_tree.add_edge(idoms[node], node) return dominator_tree
def compute_dominators(
self, head)
Compute the dominators of the graph
def compute_dominators(self, head): """Compute the dominators of the graph""" return self._compute_generic_dominators(head, self.reachable_sons, self.predecessors_iter, self.successors_iter)
def compute_immediate_dominators(
self, head)
Compute the immediate dominators of the graph
def compute_immediate_dominators(self, head): """Compute the immediate dominators of the graph""" dominators = self.compute_dominators(head) idoms = {} for node in dominators: for predecessor in self.walk_dominators(node, dominators): if predecessor in dominators[node] and node != predecessor: idoms[node] = predecessor break return idoms
def compute_immediate_postdominators(
self, tail)
Compute the immediate postdominators of the graph
def compute_immediate_postdominators(self,tail): """Compute the immediate postdominators of the graph""" postdominators = self.compute_postdominators(tail) ipdoms = {} for node in postdominators: for successor in self.walk_postdominators(node, postdominators): if successor in postdominators[node] and node != successor: ipdoms[node] = successor break return ipdoms
def compute_natural_loops(
self, head)
Computes all natural loops in the graph.
Source: Aho, Alfred V., Lam, Monica S., Sethi, R. and Jeffrey Ullman. "Compilers: Principles, Techniques, & Tools, Second Edition" Pearson/Addison Wesley (2007), Chapter 9.6.6 :param head: head of the graph :return: yield a tuple of the form (back edge, loop body)
def compute_natural_loops(self, head): """ Computes all natural loops in the graph. Source: Aho, Alfred V., Lam, Monica S., Sethi, R. and Jeffrey Ullman. "Compilers: Principles, Techniques, & Tools, Second Edition" Pearson/Addison Wesley (2007), Chapter 9.6.6 :param head: head of the graph :return: yield a tuple of the form (back edge, loop body) """ for a, b in self.compute_back_edges(head): body = self._compute_natural_loop_body(b, a) yield ((a, b), body)
def compute_postdominators(
self, leaf)
Compute the postdominators of the graph
def compute_postdominators(self, leaf): """Compute the postdominators of the graph""" return self._compute_generic_dominators(leaf, self.reachable_parents, self.successors_iter, self.predecessors_iter)
def compute_strongly_connected_components(
self)
Partitions the graph into strongly connected components.
Iterative implementation of Gabow's path-based SCC algorithm. Source: Gabow, Harold N. "Path-based depth-first search for strong and biconnected components." Information Processing Letters 74.3 (2000), pp. 109--110
The iterative implementation is inspired by Mark Dickinson's code: http://code.activestate.com/recipes/ 578507-strongly-connected-components-of-a-directed-graph/ :return: yield a strongly connected component
def compute_strongly_connected_components(self): """ Partitions the graph into strongly connected components. Iterative implementation of Gabow's path-based SCC algorithm. Source: Gabow, Harold N. "Path-based depth-first search for strong and biconnected components." Information Processing Letters 74.3 (2000), pp. 109--110 The iterative implementation is inspired by Mark Dickinson's code: http://code.activestate.com/recipes/ 578507-strongly-connected-components-of-a-directed-graph/ :return: yield a strongly connected component """ stack = [] boundaries = [] counter = len(self.nodes()) # init index with 0 index = {v: 0 for v in self.nodes()} # state machine for worklist algorithm VISIT, HANDLE_RECURSION, MERGE = 0, 1, 2 NodeState = namedtuple('NodeState', ['state', 'node']) for node in self.nodes(): # next node if node was already visited if index[node]: continue todo = [NodeState(VISIT, node)] done = set() while todo: current = todo.pop() if current.node in done: continue # node is unvisited if current.state == VISIT: stack.append(current.node) index[current.node] = len(stack) boundaries.append(index[current.node]) todo.append(NodeState(MERGE, current.node)) # follow successors for successor in self.successors_iter(current.node): todo.append(NodeState(HANDLE_RECURSION, successor)) # iterative handling of recursion algorithm elif current.state == HANDLE_RECURSION: # visit unvisited successor if index[current.node] == 0: todo.append(NodeState(VISIT, current.node)) else: # contract cycle if necessary while index[current.node] < boundaries[-1]: boundaries.pop() # merge strongly connected component else: if index[current.node] == boundaries[-1]: boundaries.pop() counter += 1 scc = set() while index[current.node] <= len(stack): popped = stack.pop() index[popped] = counter scc.add(popped) done.add(current.node) yield scc
def compute_weakly_connected_components(
self)
Return the weakly connected components
def compute_weakly_connected_components(self): """ Return the weakly connected components """ remaining = set(self.nodes()) components = [] while remaining: node = remaining.pop() todo = set() todo.add(node) component = set() done = set() while todo: node = todo.pop() if node in done: continue done.add(node) remaining.discard(node) component.add(node) todo.update(self.predecessors(node)) todo.update(self.successors(node)) components.append(component) return components
def copy(
self)
Copy the current graph instance
def copy(self): """Copy the current graph instance""" graph = self.__class__() return graph + self
def del_edge(
self, src, dst)
def del_edge(self, src, dst): self._edges.remove((src, dst)) self._nodes_succ[src].remove(dst) self._nodes_pred[dst].remove(src)
def del_node(
self, node)
Delete the @node of the graph; Also delete every edge to/from this @node
def del_node(self, node): """Delete the @node of the graph; Also delete every edge to/from this @node""" if node in self._nodes: self._nodes.remove(node) for pred in self.predecessors(node): self.del_edge(pred, node) for succ in self.successors(node): self.del_edge(node, succ)
def discard_edge(
self, src, dst)
Remove edge between @src and @dst if it exits
def discard_edge(self, src, dst): """Remove edge between @src and @dst if it exits""" if (src, dst) in self._edges: self.del_edge(src, dst)
def dot(
self)
Render dot graph with HTML
def dot(self): """Render dot graph with HTML""" escape_chars = re.compile('[' + re.escape('{}') + '&|<>' + ']') td_attr = {'align': 'left'} nodes_attr = {'shape': 'Mrecord', 'fontname': 'Courier New'} out = ["digraph asm_graph {"] # Generate basic nodes out_nodes = [] for node in self.nodes(): node_id = self.nodeid(node) out_node = '%s [\n' % node_id out_node += self._attr2str(nodes_attr, self.node_attr(node)) out_node += 'label =<<table border="0" cellborder="0" cellpadding="3">' node_html_lines = [] for lineDesc in self.node2lines(node): out_render = "" if isinstance(lineDesc, self.DotCellDescription): lineDesc = [lineDesc] for col in lineDesc: out_render += "<td %s>%s</td>" % ( self._attr2str(td_attr, col.attr), escape_chars.sub(self._fix_chars, str(col.text))) node_html_lines.append(out_render) node_html_lines = ('<tr>' + ('</tr><tr>').join(node_html_lines) + '</tr>') out_node += node_html_lines + "</table>> ];" out_nodes.append(out_node) out += out_nodes # Generate links for src, dst in self.edges(): attrs = self.edge_attr(src, dst) attrs = ' '.join( '%s="%s"' % (name, value) for name, value in viewitems(attrs) ) out.append('%s -> %s' % (self.nodeid(src), self.nodeid(dst)) + '[' + attrs + '];') out.append("}") return '\n'.join(out)
def edge_attr(
self, src, dst)
Return a dictionary of attributes for the edge between @src and @dst @src: the source node of the edge @dst: the destination node of the edge
def edge_attr(self, src, dst): """ Return a dictionary of attributes for the edge between @src and @dst @src: the source node of the edge @dst: the destination node of the edge """ return {}
def edges(
self)
def edges(self): return self._edges
def find_path(
self, src, dst, cycles_count=0, done=None)
Searches for paths from @src to @dst @src: loc_key of basic block from which it should start @dst: loc_key of basic block where it should stop @cycles_count: maximum number of times a basic block can be processed @done: dictionary of already processed loc_keys, it's value is number of times it was processed @out: list of paths from @src to @dst
def find_path(self, src, dst, cycles_count=0, done=None): """ Searches for paths from @src to @dst @src: loc_key of basic block from which it should start @dst: loc_key of basic block where it should stop @cycles_count: maximum number of times a basic block can be processed @done: dictionary of already processed loc_keys, it's value is number of times it was processed @out: list of paths from @src to @dst """ if done is None: done = {} if dst in done and done[dst] > cycles_count: return [[]] if src == dst: return [[src]] out = [] for node in self.predecessors(dst): done_n = dict(done) done_n[dst] = done_n.get(dst, 0) + 1 for path in self.find_path(src, node, cycles_count, done_n): if path and path[0] == src: out.append(path + [dst]) return out
def find_path_from_src(
self, src, dst, cycles_count=0, done=None)
This function does the same as function find_path. But it searches the paths from src to dst, not vice versa like find_path. This approach might be more efficient in some cases. @src: loc_key of basic block from which it should start @dst: loc_key of basic block where it should stop @cycles_count: maximum number of times a basic block can be processed @done: dictionary of already processed loc_keys, it's value is number of times it was processed @out: list of paths from @src to @dst
def find_path_from_src(self, src, dst, cycles_count=0, done=None): """ This function does the same as function find_path. But it searches the paths from src to dst, not vice versa like find_path. This approach might be more efficient in some cases. @src: loc_key of basic block from which it should start @dst: loc_key of basic block where it should stop @cycles_count: maximum number of times a basic block can be processed @done: dictionary of already processed loc_keys, it's value is number of times it was processed @out: list of paths from @src to @dst """ if done is None: done = {} if src == dst: return [[src]] if src in done and done[src] > cycles_count: return [[]] out = [] for node in self.successors(src): done_n = dict(done) done_n[src] = done_n.get(src, 0) + 1 for path in self.find_path_from_src(node, dst, cycles_count, done_n): if path and path[len(path)-1] == dst: out.append([src] + path) return out
def has_loop(
self)
Return True if the graph contains at least a cycle
def has_loop(self): """Return True if the graph contains at least a cycle""" todo = list(self.nodes()) # tested nodes done = set() # current DFS nodes current = set() while todo: node = todo.pop() if node in done: continue if node in current: # DFS branch end for succ in self.successors_iter(node): if succ in current: return True # A node cannot be in current AND in done current.remove(node) done.add(node) else: # Launch DFS from node todo.append(node) current.add(node) todo += self.successors(node) return False
def heads(
self)
def heads(self): return [x for x in self.heads_iter()]
def heads_iter(
self)
def heads_iter(self): for node in self._nodes: if not self._nodes_pred[node]: yield node
def leaves(
self)
def leaves(self): return [x for x in self.leaves_iter()]
def leaves_iter(
self)
def leaves_iter(self): for node in self._nodes: if not self._nodes_succ[node]: yield node
def merge(
self, graph)
Merge the current graph with @graph @graph: DiGraph instance
def merge(self, graph): """Merge the current graph with @graph @graph: DiGraph instance """ for node in graph._nodes: self.add_node(node) for edge in graph._edges: self.add_edge(*edge)
def node2lines(
self, node)
Returns an iterator on cells of the dot @node. A DotCellDescription or a list of DotCellDescription are accepted @node: a node of the graph
def node2lines(self, node): """ Returns an iterator on cells of the dot @node. A DotCellDescription or a list of DotCellDescription are accepted @node: a node of the graph """ yield self.DotCellDescription(text=str(node), attr={})
def node_attr(
self, node)
Returns a dictionary of the @node's attributes @node: a node of the graph
def node_attr(self, node): """ Returns a dictionary of the @node's attributes @node: a node of the graph """ return {}
def nodeid(
self, node)
Returns uniq id for a @node @node: a node of the graph
def nodeid(self, node): """ Returns uniq id for a @node @node: a node of the graph """ return hash(node) & 0xFFFFFFFFFFFFFFFF
def nodes(
self)
def nodes(self): return self._nodes
def predecessors(
self, node)
def predecessors(self, node): return [x for x in self.predecessors_iter(node)]
def predecessors_iter(
self, node)
def predecessors_iter(self, node): if not node in self._nodes_pred: return for n_pred in self._nodes_pred[node]: yield n_pred
def predecessors_stop_node_iter(
self, node, head)
def predecessors_stop_node_iter(self, node, head): if node == head: return for next_node in self.predecessors_iter(node): yield next_node
def reachable_parents(
self, leaf)
Compute all parents of node @leaf. Each parent is an immediate predecessor of an arbitrary, already yielded parent of @leaf
def reachable_parents(self, leaf): """Compute all parents of node @leaf. Each parent is an immediate predecessor of an arbitrary, already yielded parent of @leaf""" return self._reachable_nodes(leaf, self.predecessors_iter)
def reachable_parents_stop_node(
self, leaf, head)
Compute all parents of node @leaf. Each parent is an immediate predecessor of an arbitrary, already yielded parent of @leaf. Do not compute reachables past @head node
def reachable_parents_stop_node(self, leaf, head): """Compute all parents of node @leaf. Each parent is an immediate predecessor of an arbitrary, already yielded parent of @leaf. Do not compute reachables past @head node""" return self._reachable_nodes( leaf, lambda node_cur: self.predecessors_stop_node_iter( node_cur, head ) )
def reachable_sons(
self, head)
Compute all nodes reachable from node @head. Each son is an immediate successor of an arbitrary, already yielded son of @head
def reachable_sons(self, head): """Compute all nodes reachable from node @head. Each son is an immediate successor of an arbitrary, already yielded son of @head""" return self._reachable_nodes(head, self.successors_iter)
def replace_node(
self, node, new_node)
Replace @node by @new_node
def replace_node(self, node, new_node): """ Replace @node by @new_node """ predecessors = self.predecessors(node) successors = self.successors(node) self.del_node(node) for predecessor in predecessors: if predecessor == node: predecessor = new_node self.add_uniq_edge(predecessor, new_node) for successor in successors: if successor == node: successor = new_node self.add_uniq_edge(new_node, successor)
def successors(
self, node)
def successors(self, node): return [x for x in self.successors_iter(node)]
def successors_iter(
self, node)
def successors_iter(self, node): if not node in self._nodes_succ: return for n_suc in self._nodes_succ[node]: yield n_suc
def walk_breadth_first_backward(
self, head)
Performs a breadth first search on the reversed graph from @head
def walk_breadth_first_backward(self, head): """Performs a breadth first search on the reversed graph from @head""" return self._walk_generic_first(head, 0, self.predecessors_iter)
def walk_breadth_first_forward(
self, head)
Performs a breadth first search on the graph from @head
def walk_breadth_first_forward(self, head): """Performs a breadth first search on the graph from @head""" return self._walk_generic_first(head, 0, self.successors_iter)
def walk_depth_first_backward(
self, head)
Performs a depth first search on the reversed graph from @head
def walk_depth_first_backward(self, head): """Performs a depth first search on the reversed graph from @head""" return self._walk_generic_first(head, -1, self.predecessors_iter)
def walk_depth_first_forward(
self, head)
Performs a depth first search on the graph from @head
def walk_depth_first_forward(self, head): """Performs a depth first search on the graph from @head""" return self._walk_generic_first(head, -1, self.successors_iter)
def walk_dominators(
self, node, dominators)
Return an iterator of the ordered list of @node's dominators The function doesn't return the self reference in dominators. @node: The start node @dominators: The dictionary containing at least node's dominators
def walk_dominators(self, node, dominators): """Return an iterator of the ordered list of @node's dominators The function doesn't return the self reference in dominators. @node: The start node @dominators: The dictionary containing at least node's dominators """ return self._walk_generic_dominator(node, dominators, self.predecessors_iter)
def walk_postdominators(
self, node, postdominators)
Return an iterator of the ordered list of @node's postdominators The function doesn't return the self reference in postdominators. @node: The start node @postdominators: The dictionary containing at least node's postdominators
def walk_postdominators(self, node, postdominators): """Return an iterator of the ordered list of @node's postdominators The function doesn't return the self reference in postdominators. @node: The start node @postdominators: The dictionary containing at least node's postdominators """ return self._walk_generic_dominator(node, postdominators, self.successors_iter)
class DiGraphSimplifier
Wrapper on graph simplification passes.
Instance handle passes lists.
class DiGraphSimplifier(object): """Wrapper on graph simplification passes. Instance handle passes lists. """ def __init__(self): self.passes = [] def enable_passes(self, passes): """Add @passes to passes to applied @passes: sequence of function (DiGraphSimplifier, DiGraph) -> None """ self.passes += passes def apply_simp(self, graph): """Apply enabled simplifications on graph @graph @graph: DiGraph instance """ while True: new_graph = graph.copy() for simp_func in self.passes: simp_func(self, new_graph) if new_graph == graph: break graph = new_graph return new_graph def __call__(self, graph): """Wrapper on 'apply_simp'""" return self.apply_simp(graph)
Ancestors (in MRO)
- DiGraphSimplifier
- builtins.object
Static methods
def __init__(
self)
Initialize self. See help(type(self)) for accurate signature.
def __init__(self): self.passes = []
def apply_simp(
self, graph)
Apply enabled simplifications on graph @graph @graph: DiGraph instance
def apply_simp(self, graph): """Apply enabled simplifications on graph @graph @graph: DiGraph instance """ while True: new_graph = graph.copy() for simp_func in self.passes: simp_func(self, new_graph) if new_graph == graph: break graph = new_graph return new_graph
def enable_passes(
self, passes)
Add @passes to passes to applied @passes: sequence of function (DiGraphSimplifier, DiGraph) -> None
def enable_passes(self, passes): """Add @passes to passes to applied @passes: sequence of function (DiGraphSimplifier, DiGraph) -> None """ self.passes += passes
Instance variables
var passes
class MatchGraph
MatchGraph intends to be the counterpart of match_expr, but for DiGraph
This class provides API to match a given DiGraph pattern, with addidionnal restrictions. The implemented algorithm is a naive approach.
The recommended way to instantiate a MatchGraph is the use of MatchGraphJoker.
class MatchGraph(DiGraph): """MatchGraph intends to be the counterpart of match_expr, but for DiGraph This class provides API to match a given DiGraph pattern, with addidionnal restrictions. The implemented algorithm is a naive approach. The recommended way to instantiate a MatchGraph is the use of MatchGraphJoker. """ def __init__(self, *args, **kwargs): super(MatchGraph, self).__init__(*args, **kwargs) # Construction helper self._last_node = None # Construction helpers def __rshift__(self, joker): """Construction helper, adding @joker to the current graph as a son of _last_node @joker: MatchGraphJoker instance""" assert isinstance(joker, MatchGraphJoker) assert isinstance(self._last_node, MatchGraphJoker) self.add_node(joker) self.add_edge(self._last_node, joker) self._last_node = joker return self def __add__(self, graph): """Construction helper, merging @graph with self @graph: MatchGraph instance """ assert isinstance(graph, MatchGraph) # Reset helpers flag self._last_node = None graph._last_node = None # Merge graph into self for node in graph.nodes(): self.add_node(node) for edge in graph.edges(): self.add_edge(*edge) return self # Graph matching def _check_node(self, candidate, expected, graph, partial_sol=None): """Check if @candidate can stand for @expected in @graph, given @partial_sol @candidate: @graph's node @expected: MatchGraphJoker instance @graph: DiGraph instance @partial_sol: (optional) dictionary of MatchGraphJoker -> @graph's node standing for a partial solution """ # Avoid having 2 different joker for the same node if partial_sol and candidate in viewvalues(partial_sol): return False # Check lambda filtering if not expected.filt(graph, candidate): return False # Check arity # If filter_in/out, then arity must be the same # Otherwise, arity of the candidate must be at least equal if ((expected.restrict_in == True and len(self.predecessors(expected)) != len(graph.predecessors(candidate))) or (expected.restrict_in == False and len(self.predecessors(expected)) > len(graph.predecessors(candidate)))): return False if ((expected.restrict_out == True and len(self.successors(expected)) != len(graph.successors(candidate))) or (expected.restrict_out == False and len(self.successors(expected)) > len(graph.successors(candidate)))): return False # Check edges with partial solution if any if not partial_sol: return True for pred in self.predecessors(expected): if (pred in partial_sol and partial_sol[pred] not in graph.predecessors(candidate)): return False for succ in self.successors(expected): if (succ in partial_sol and partial_sol[succ] not in graph.successors(candidate)): return False # All checks OK return True def _propagate_sol(self, node, partial_sol, graph, todo, propagator): """ Try to extend the current @partial_sol by propagating the solution using @propagator on @node. New solutions are added to @todo """ real_node = partial_sol[node] for candidate in propagator(self, node): # Edge already in the partial solution, skip it if candidate in partial_sol: continue # Check candidate for candidate_real in propagator(graph, real_node): if self._check_node(candidate_real, candidate, graph, partial_sol): temp_sol = partial_sol.copy() temp_sol[candidate] = candidate_real if temp_sol not in todo: todo.append(temp_sol) @staticmethod def _propagate_successors(graph, node): """Propagate through @node successors in @graph""" return graph.successors_iter(node) @staticmethod def _propagate_predecessors(graph, node): """Propagate through @node predecessors in @graph""" return graph.predecessors_iter(node) def match(self, graph): """Naive subgraph matching between graph and self. Iterator on matching solution, as dictionary MatchGraphJoker -> @graph @graph: DiGraph instance In order to obtained correct and complete results, @graph must be connected. """ # Partial solution: nodes corrects, edges between these nodes corrects # A partial solution is a dictionary MatchGraphJoker -> @graph's node todo = list() # Dictionaries containing partial solution done = list() # Already computed partial solutions # Elect first candidates to_match = next(iter(self._nodes)) for node in graph.nodes(): if self._check_node(node, to_match, graph): to_add = {to_match: node} if to_add not in todo: todo.append(to_add) while todo: # When a partial_sol is computed, if more precise partial solutions # are found, they will be added to 'todo' # -> using last entry of todo first performs a "depth first" # approach on solutions # -> the algorithm may converge faster to a solution, a desired # behavior while doing graph simplification (stopping after one # sol) partial_sol = todo.pop() # Avoid infinite loop and recurrent work if partial_sol in done: continue done.append(partial_sol) # If all nodes are matching, this is a potential solution if len(partial_sol) == len(self._nodes): yield partial_sol continue # Find node to tests using edges for node in partial_sol: self._propagate_sol(node, partial_sol, graph, todo, MatchGraph._propagate_successors) self._propagate_sol(node, partial_sol, graph, todo, MatchGraph._propagate_predecessors)
Ancestors (in MRO)
- MatchGraph
- DiGraph
- builtins.object
Class variables
Static methods
def __init__(
self, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.
def __init__(self, *args, **kwargs): super(MatchGraph, self).__init__(*args, **kwargs) # Construction helper self._last_node = None
def add_edge(
self, src, dst)
def add_edge(self, src, dst): if not src in self._nodes: self.add_node(src) if not dst in self._nodes: self.add_node(dst) self._edges.append((src, dst)) self._nodes_succ[src].append(dst) self._nodes_pred[dst].append(src)
def add_node(
self, node)
Add the node @node to the graph. If the node was already present, return False. Otherwise, return True
def add_node(self, node): """Add the node @node to the graph. If the node was already present, return False. Otherwise, return True """ if node in self._nodes: return False self._nodes.add(node) self._nodes_succ[node] = [] self._nodes_pred[node] = [] return True
def add_uniq_edge(
self, src, dst)
Add an edge from @src to @dst if it doesn't already exist
def add_uniq_edge(self, src, dst): """Add an edge from @src to @dst if it doesn't already exist""" if (src not in self._nodes_succ or dst not in self._nodes_succ[src]): self.add_edge(src, dst)
def compute_back_edges(
self, head)
Computes all back edges from a node to a dominator in the graph. :param head: head of graph :return: yield a back edge
def compute_back_edges(self, head): """ Computes all back edges from a node to a dominator in the graph. :param head: head of graph :return: yield a back edge """ dominators = self.compute_dominators(head) # traverse graph for node in self.walk_depth_first_forward(head): for successor in self.successors_iter(node): # check for a back edge to a dominator if successor in dominators[node]: edge = (node, successor) yield edge
def compute_dominance_frontier(
self, head)
Compute the dominance frontier of the graph
Source: Cooper, Keith D., Timothy J. Harvey, and Ken Kennedy. "A simple, fast dominance algorithm." Software Practice & Experience 4 (2001), p. 9
def compute_dominance_frontier(self, head): """ Compute the dominance frontier of the graph Source: Cooper, Keith D., Timothy J. Harvey, and Ken Kennedy. "A simple, fast dominance algorithm." Software Practice & Experience 4 (2001), p. 9 """ idoms = self.compute_immediate_dominators(head) frontier = {} for node in idoms: if len(self._nodes_pred[node]) >= 2: for predecessor in self.predecessors_iter(node): runner = predecessor if runner not in idoms: continue while runner != idoms[node]: if runner not in frontier: frontier[runner] = set() frontier[runner].add(node) runner = idoms[runner] return frontier
def compute_dominator_tree(
self, head)
Computes the dominator tree of a graph :param head: head of graph :return: DiGraph
def compute_dominator_tree(self, head): """ Computes the dominator tree of a graph :param head: head of graph :return: DiGraph """ idoms = self.compute_immediate_dominators(head) dominator_tree = DiGraph() for node in idoms: dominator_tree.add_edge(idoms[node], node) return dominator_tree
def compute_dominators(
self, head)
Compute the dominators of the graph
def compute_dominators(self, head): """Compute the dominators of the graph""" return self._compute_generic_dominators(head, self.reachable_sons, self.predecessors_iter, self.successors_iter)
def compute_immediate_dominators(
self, head)
Compute the immediate dominators of the graph
def compute_immediate_dominators(self, head): """Compute the immediate dominators of the graph""" dominators = self.compute_dominators(head) idoms = {} for node in dominators: for predecessor in self.walk_dominators(node, dominators): if predecessor in dominators[node] and node != predecessor: idoms[node] = predecessor break return idoms
def compute_immediate_postdominators(
self, tail)
Compute the immediate postdominators of the graph
def compute_immediate_postdominators(self,tail): """Compute the immediate postdominators of the graph""" postdominators = self.compute_postdominators(tail) ipdoms = {} for node in postdominators: for successor in self.walk_postdominators(node, postdominators): if successor in postdominators[node] and node != successor: ipdoms[node] = successor break return ipdoms
def compute_natural_loops(
self, head)
Computes all natural loops in the graph.
Source: Aho, Alfred V., Lam, Monica S., Sethi, R. and Jeffrey Ullman. "Compilers: Principles, Techniques, & Tools, Second Edition" Pearson/Addison Wesley (2007), Chapter 9.6.6 :param head: head of the graph :return: yield a tuple of the form (back edge, loop body)
def compute_natural_loops(self, head): """ Computes all natural loops in the graph. Source: Aho, Alfred V., Lam, Monica S., Sethi, R. and Jeffrey Ullman. "Compilers: Principles, Techniques, & Tools, Second Edition" Pearson/Addison Wesley (2007), Chapter 9.6.6 :param head: head of the graph :return: yield a tuple of the form (back edge, loop body) """ for a, b in self.compute_back_edges(head): body = self._compute_natural_loop_body(b, a) yield ((a, b), body)
def compute_postdominators(
self, leaf)
Compute the postdominators of the graph
def compute_postdominators(self, leaf): """Compute the postdominators of the graph""" return self._compute_generic_dominators(leaf, self.reachable_parents, self.successors_iter, self.predecessors_iter)
def compute_strongly_connected_components(
self)
Partitions the graph into strongly connected components.
Iterative implementation of Gabow's path-based SCC algorithm. Source: Gabow, Harold N. "Path-based depth-first search for strong and biconnected components." Information Processing Letters 74.3 (2000), pp. 109--110
The iterative implementation is inspired by Mark Dickinson's code: http://code.activestate.com/recipes/ 578507-strongly-connected-components-of-a-directed-graph/ :return: yield a strongly connected component
def compute_strongly_connected_components(self): """ Partitions the graph into strongly connected components. Iterative implementation of Gabow's path-based SCC algorithm. Source: Gabow, Harold N. "Path-based depth-first search for strong and biconnected components." Information Processing Letters 74.3 (2000), pp. 109--110 The iterative implementation is inspired by Mark Dickinson's code: http://code.activestate.com/recipes/ 578507-strongly-connected-components-of-a-directed-graph/ :return: yield a strongly connected component """ stack = [] boundaries = [] counter = len(self.nodes()) # init index with 0 index = {v: 0 for v in self.nodes()} # state machine for worklist algorithm VISIT, HANDLE_RECURSION, MERGE = 0, 1, 2 NodeState = namedtuple('NodeState', ['state', 'node']) for node in self.nodes(): # next node if node was already visited if index[node]: continue todo = [NodeState(VISIT, node)] done = set() while todo: current = todo.pop() if current.node in done: continue # node is unvisited if current.state == VISIT: stack.append(current.node) index[current.node] = len(stack) boundaries.append(index[current.node]) todo.append(NodeState(MERGE, current.node)) # follow successors for successor in self.successors_iter(current.node): todo.append(NodeState(HANDLE_RECURSION, successor)) # iterative handling of recursion algorithm elif current.state == HANDLE_RECURSION: # visit unvisited successor if index[current.node] == 0: todo.append(NodeState(VISIT, current.node)) else: # contract cycle if necessary while index[current.node] < boundaries[-1]: boundaries.pop() # merge strongly connected component else: if index[current.node] == boundaries[-1]: boundaries.pop() counter += 1 scc = set() while index[current.node] <= len(stack): popped = stack.pop() index[popped] = counter scc.add(popped) done.add(current.node) yield scc
def compute_weakly_connected_components(
self)
Return the weakly connected components
def compute_weakly_connected_components(self): """ Return the weakly connected components """ remaining = set(self.nodes()) components = [] while remaining: node = remaining.pop() todo = set() todo.add(node) component = set() done = set() while todo: node = todo.pop() if node in done: continue done.add(node) remaining.discard(node) component.add(node) todo.update(self.predecessors(node)) todo.update(self.successors(node)) components.append(component) return components
def copy(
self)
Copy the current graph instance
def copy(self): """Copy the current graph instance""" graph = self.__class__() return graph + self
def del_edge(
self, src, dst)
def del_edge(self, src, dst): self._edges.remove((src, dst)) self._nodes_succ[src].remove(dst) self._nodes_pred[dst].remove(src)
def del_node(
self, node)
Delete the @node of the graph; Also delete every edge to/from this @node
def del_node(self, node): """Delete the @node of the graph; Also delete every edge to/from this @node""" if node in self._nodes: self._nodes.remove(node) for pred in self.predecessors(node): self.del_edge(pred, node) for succ in self.successors(node): self.del_edge(node, succ)
def discard_edge(
self, src, dst)
Remove edge between @src and @dst if it exits
def discard_edge(self, src, dst): """Remove edge between @src and @dst if it exits""" if (src, dst) in self._edges: self.del_edge(src, dst)
def dot(
self)
Render dot graph with HTML
def dot(self): """Render dot graph with HTML""" escape_chars = re.compile('[' + re.escape('{}') + '&|<>' + ']') td_attr = {'align': 'left'} nodes_attr = {'shape': 'Mrecord', 'fontname': 'Courier New'} out = ["digraph asm_graph {"] # Generate basic nodes out_nodes = [] for node in self.nodes(): node_id = self.nodeid(node) out_node = '%s [\n' % node_id out_node += self._attr2str(nodes_attr, self.node_attr(node)) out_node += 'label =<<table border="0" cellborder="0" cellpadding="3">' node_html_lines = [] for lineDesc in self.node2lines(node): out_render = "" if isinstance(lineDesc, self.DotCellDescription): lineDesc = [lineDesc] for col in lineDesc: out_render += "<td %s>%s</td>" % ( self._attr2str(td_attr, col.attr), escape_chars.sub(self._fix_chars, str(col.text))) node_html_lines.append(out_render) node_html_lines = ('<tr>' + ('</tr><tr>').join(node_html_lines) + '</tr>') out_node += node_html_lines + "</table>> ];" out_nodes.append(out_node) out += out_nodes # Generate links for src, dst in self.edges(): attrs = self.edge_attr(src, dst) attrs = ' '.join( '%s="%s"' % (name, value) for name, value in viewitems(attrs) ) out.append('%s -> %s' % (self.nodeid(src), self.nodeid(dst)) + '[' + attrs + '];') out.append("}") return '\n'.join(out)
def edge_attr(
self, src, dst)
Return a dictionary of attributes for the edge between @src and @dst @src: the source node of the edge @dst: the destination node of the edge
def edge_attr(self, src, dst): """ Return a dictionary of attributes for the edge between @src and @dst @src: the source node of the edge @dst: the destination node of the edge """ return {}
def edges(
self)
def edges(self): return self._edges
def find_path(
self, src, dst, cycles_count=0, done=None)
Searches for paths from @src to @dst @src: loc_key of basic block from which it should start @dst: loc_key of basic block where it should stop @cycles_count: maximum number of times a basic block can be processed @done: dictionary of already processed loc_keys, it's value is number of times it was processed @out: list of paths from @src to @dst
def find_path(self, src, dst, cycles_count=0, done=None): """ Searches for paths from @src to @dst @src: loc_key of basic block from which it should start @dst: loc_key of basic block where it should stop @cycles_count: maximum number of times a basic block can be processed @done: dictionary of already processed loc_keys, it's value is number of times it was processed @out: list of paths from @src to @dst """ if done is None: done = {} if dst in done and done[dst] > cycles_count: return [[]] if src == dst: return [[src]] out = [] for node in self.predecessors(dst): done_n = dict(done) done_n[dst] = done_n.get(dst, 0) + 1 for path in self.find_path(src, node, cycles_count, done_n): if path and path[0] == src: out.append(path + [dst]) return out
def find_path_from_src(
self, src, dst, cycles_count=0, done=None)
This function does the same as function find_path. But it searches the paths from src to dst, not vice versa like find_path. This approach might be more efficient in some cases. @src: loc_key of basic block from which it should start @dst: loc_key of basic block where it should stop @cycles_count: maximum number of times a basic block can be processed @done: dictionary of already processed loc_keys, it's value is number of times it was processed @out: list of paths from @src to @dst
def find_path_from_src(self, src, dst, cycles_count=0, done=None): """ This function does the same as function find_path. But it searches the paths from src to dst, not vice versa like find_path. This approach might be more efficient in some cases. @src: loc_key of basic block from which it should start @dst: loc_key of basic block where it should stop @cycles_count: maximum number of times a basic block can be processed @done: dictionary of already processed loc_keys, it's value is number of times it was processed @out: list of paths from @src to @dst """ if done is None: done = {} if src == dst: return [[src]] if src in done and done[src] > cycles_count: return [[]] out = [] for node in self.successors(src): done_n = dict(done) done_n[src] = done_n.get(src, 0) + 1 for path in self.find_path_from_src(node, dst, cycles_count, done_n): if path and path[len(path)-1] == dst: out.append([src] + path) return out
def has_loop(
self)
Return True if the graph contains at least a cycle
def has_loop(self): """Return True if the graph contains at least a cycle""" todo = list(self.nodes()) # tested nodes done = set() # current DFS nodes current = set() while todo: node = todo.pop() if node in done: continue if node in current: # DFS branch end for succ in self.successors_iter(node): if succ in current: return True # A node cannot be in current AND in done current.remove(node) done.add(node) else: # Launch DFS from node todo.append(node) current.add(node) todo += self.successors(node) return False
def heads(
self)
def heads(self): return [x for x in self.heads_iter()]
def heads_iter(
self)
def heads_iter(self): for node in self._nodes: if not self._nodes_pred[node]: yield node
def leaves(
self)
def leaves(self): return [x for x in self.leaves_iter()]
def leaves_iter(
self)
def leaves_iter(self): for node in self._nodes: if not self._nodes_succ[node]: yield node
def match(
self, graph)
Naive subgraph matching between graph and self. Iterator on matching solution, as dictionary MatchGraphJoker -> @graph @graph: DiGraph instance In order to obtained correct and complete results, @graph must be connected.
def match(self, graph): """Naive subgraph matching between graph and self. Iterator on matching solution, as dictionary MatchGraphJoker -> @graph @graph: DiGraph instance In order to obtained correct and complete results, @graph must be connected. """ # Partial solution: nodes corrects, edges between these nodes corrects # A partial solution is a dictionary MatchGraphJoker -> @graph's node todo = list() # Dictionaries containing partial solution done = list() # Already computed partial solutions # Elect first candidates to_match = next(iter(self._nodes)) for node in graph.nodes(): if self._check_node(node, to_match, graph): to_add = {to_match: node} if to_add not in todo: todo.append(to_add) while todo: # When a partial_sol is computed, if more precise partial solutions # are found, they will be added to 'todo' # -> using last entry of todo first performs a "depth first" # approach on solutions # -> the algorithm may converge faster to a solution, a desired # behavior while doing graph simplification (stopping after one # sol) partial_sol = todo.pop() # Avoid infinite loop and recurrent work if partial_sol in done: continue done.append(partial_sol) # If all nodes are matching, this is a potential solution if len(partial_sol) == len(self._nodes): yield partial_sol continue # Find node to tests using edges for node in partial_sol: self._propagate_sol(node, partial_sol, graph, todo, MatchGraph._propagate_successors) self._propagate_sol(node, partial_sol, graph, todo, MatchGraph._propagate_predecessors)
def merge(
self, graph)
Merge the current graph with @graph @graph: DiGraph instance
def merge(self, graph): """Merge the current graph with @graph @graph: DiGraph instance """ for node in graph._nodes: self.add_node(node) for edge in graph._edges: self.add_edge(*edge)
def node2lines(
self, node)
Returns an iterator on cells of the dot @node. A DotCellDescription or a list of DotCellDescription are accepted @node: a node of the graph
def node2lines(self, node): """ Returns an iterator on cells of the dot @node. A DotCellDescription or a list of DotCellDescription are accepted @node: a node of the graph """ yield self.DotCellDescription(text=str(node), attr={})
def node_attr(
self, node)
Returns a dictionary of the @node's attributes @node: a node of the graph
def node_attr(self, node): """ Returns a dictionary of the @node's attributes @node: a node of the graph """ return {}
def nodeid(
self, node)
Returns uniq id for a @node @node: a node of the graph
def nodeid(self, node): """ Returns uniq id for a @node @node: a node of the graph """ return hash(node) & 0xFFFFFFFFFFFFFFFF
def nodes(
self)
def nodes(self): return self._nodes
def predecessors(
self, node)
def predecessors(self, node): return [x for x in self.predecessors_iter(node)]
def predecessors_iter(
self, node)
def predecessors_iter(self, node): if not node in self._nodes_pred: return for n_pred in self._nodes_pred[node]: yield n_pred
def predecessors_stop_node_iter(
self, node, head)
def predecessors_stop_node_iter(self, node, head): if node == head: return for next_node in self.predecessors_iter(node): yield next_node
def reachable_parents(
self, leaf)
Compute all parents of node @leaf. Each parent is an immediate predecessor of an arbitrary, already yielded parent of @leaf
def reachable_parents(self, leaf): """Compute all parents of node @leaf. Each parent is an immediate predecessor of an arbitrary, already yielded parent of @leaf""" return self._reachable_nodes(leaf, self.predecessors_iter)
def reachable_parents_stop_node(
self, leaf, head)
Compute all parents of node @leaf. Each parent is an immediate predecessor of an arbitrary, already yielded parent of @leaf. Do not compute reachables past @head node
def reachable_parents_stop_node(self, leaf, head): """Compute all parents of node @leaf. Each parent is an immediate predecessor of an arbitrary, already yielded parent of @leaf. Do not compute reachables past @head node""" return self._reachable_nodes( leaf, lambda node_cur: self.predecessors_stop_node_iter( node_cur, head ) )
def reachable_sons(
self, head)
Compute all nodes reachable from node @head. Each son is an immediate successor of an arbitrary, already yielded son of @head
def reachable_sons(self, head): """Compute all nodes reachable from node @head. Each son is an immediate successor of an arbitrary, already yielded son of @head""" return self._reachable_nodes(head, self.successors_iter)
def replace_node(
self, node, new_node)
Replace @node by @new_node
def replace_node(self, node, new_node): """ Replace @node by @new_node """ predecessors = self.predecessors(node) successors = self.successors(node) self.del_node(node) for predecessor in predecessors: if predecessor == node: predecessor = new_node self.add_uniq_edge(predecessor, new_node) for successor in successors: if successor == node: successor = new_node self.add_uniq_edge(new_node, successor)
def successors(
self, node)
def successors(self, node): return [x for x in self.successors_iter(node)]
def successors_iter(
self, node)
def successors_iter(self, node): if not node in self._nodes_succ: return for n_suc in self._nodes_succ[node]: yield n_suc
def walk_breadth_first_backward(
self, head)
Performs a breadth first search on the reversed graph from @head
def walk_breadth_first_backward(self, head): """Performs a breadth first search on the reversed graph from @head""" return self._walk_generic_first(head, 0, self.predecessors_iter)
def walk_breadth_first_forward(
self, head)
Performs a breadth first search on the graph from @head
def walk_breadth_first_forward(self, head): """Performs a breadth first search on the graph from @head""" return self._walk_generic_first(head, 0, self.successors_iter)
def walk_depth_first_backward(
self, head)
Performs a depth first search on the reversed graph from @head
def walk_depth_first_backward(self, head): """Performs a depth first search on the reversed graph from @head""" return self._walk_generic_first(head, -1, self.predecessors_iter)
def walk_depth_first_forward(
self, head)
Performs a depth first search on the graph from @head
def walk_depth_first_forward(self, head): """Performs a depth first search on the graph from @head""" return self._walk_generic_first(head, -1, self.successors_iter)
def walk_dominators(
self, node, dominators)
Return an iterator of the ordered list of @node's dominators The function doesn't return the self reference in dominators. @node: The start node @dominators: The dictionary containing at least node's dominators
def walk_dominators(self, node, dominators): """Return an iterator of the ordered list of @node's dominators The function doesn't return the self reference in dominators. @node: The start node @dominators: The dictionary containing at least node's dominators """ return self._walk_generic_dominator(node, dominators, self.predecessors_iter)
def walk_postdominators(
self, node, postdominators)
Return an iterator of the ordered list of @node's postdominators The function doesn't return the self reference in postdominators. @node: The start node @postdominators: The dictionary containing at least node's postdominators
def walk_postdominators(self, node, postdominators): """Return an iterator of the ordered list of @node's postdominators The function doesn't return the self reference in postdominators. @node: The start node @postdominators: The dictionary containing at least node's postdominators """ return self._walk_generic_dominator(node, postdominators, self.successors_iter)
class MatchGraphJoker
MatchGraphJoker are joker nodes of MatchGraph, that is to say nodes which stand for any node. Restrictions can be added to jokers.
If j1, j2 and j3 are MatchGraphJoker, one can quickly build a matcher for the pattern: | +----v----+ | (j1) | +----+----+ | +----v----+ | (j2) |<---+ +----+--+-+ | | +------+ +----v----+ | (j3) | +----+----+ | v Using:
matcher = j1 >> j2 >> j3 matcher += j2 >> j2 Or: matcher = j1 >> j2 >> j2 >> j3
class MatchGraphJoker(object): """MatchGraphJoker are joker nodes of MatchGraph, that is to say nodes which stand for any node. Restrictions can be added to jokers. If j1, j2 and j3 are MatchGraphJoker, one can quickly build a matcher for the pattern: | +----v----+ | (j1) | +----+----+ | +----v----+ | (j2) |<---+ +----+--+-+ | | +------+ +----v----+ | (j3) | +----+----+ | v Using: >>> matcher = j1 >> j2 >> j3 >>> matcher += j2 >> j2 Or: >>> matcher = j1 >> j2 >> j2 >> j3 """ def __init__(self, restrict_in=True, restrict_out=True, filt=None, name=None): """Instantiate a MatchGraphJoker, with restrictions @restrict_in: (optional) if set, the number of predecessors of the matched node must be the same than the joker node in the associated MatchGraph @restrict_out: (optional) counterpart of @restrict_in for successors @filt: (optional) function(graph, node) -> boolean for filtering candidate node @name: (optional) helper for displaying the current joker """ if filt is None: filt = lambda graph, node: True self.filt = filt if name is None: name = str(id(self)) self._name = name self.restrict_in = restrict_in self.restrict_out = restrict_out def __rshift__(self, joker): """Helper for describing a MatchGraph from @joker J1 >> J2 stands for an edge going to J2 from J1 @joker: MatchGraphJoker instance """ assert isinstance(joker, MatchGraphJoker) graph = MatchGraph() graph.add_node(self) graph.add_node(joker) graph.add_edge(self, joker) # For future "A >> B" idiom construction graph._last_node = joker return graph def __str__(self): info = [] if not self.restrict_in: info.append("In:*") if not self.restrict_out: info.append("Out:*") return "Joker %s %s" % (self._name, "(%s)" % " ".join(info) if info else "")
Ancestors (in MRO)
- MatchGraphJoker
- builtins.object
Static methods
def __init__(
self, restrict_in=True, restrict_out=True, filt=None, name=None)
Instantiate a MatchGraphJoker, with restrictions @restrict_in: (optional) if set, the number of predecessors of the matched node must be the same than the joker node in the associated MatchGraph @restrict_out: (optional) counterpart of @restrict_in for successors @filt: (optional) function(graph, node) -> boolean for filtering candidate node @name: (optional) helper for displaying the current joker
def __init__(self, restrict_in=True, restrict_out=True, filt=None, name=None): """Instantiate a MatchGraphJoker, with restrictions @restrict_in: (optional) if set, the number of predecessors of the matched node must be the same than the joker node in the associated MatchGraph @restrict_out: (optional) counterpart of @restrict_in for successors @filt: (optional) function(graph, node) -> boolean for filtering candidate node @name: (optional) helper for displaying the current joker """ if filt is None: filt = lambda graph, node: True self.filt = filt if name is None: name = str(id(self)) self._name = name self.restrict_in = restrict_in self.restrict_out = restrict_out
Instance variables
var filt
var restrict_in
var restrict_out